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This paper presents a new local obstacle avoidance method for indoor mobile robots. The 

method uses a new directional approach called the Lane Method. The Lane Method is combined 

with a velocity space method i.e., the Curvature-Velocity Method to form the Lane-Curvature 

Method(LCM). The Lane Method divides the work area into lanes, and then chooses the best 

lane to follow to optimize travel along a desired goal heading. A local heading is then calculated 

for entering and following the best lane, and CVM uses this local heading to determine the 

optimal translational and rotational velocities, considering some physical limitations and 

environmental constraint. By combining both the directional and velocity space methods, LCM 

yields safe collision-free motion as well as smooth motion taking the physical limitations of the 

robot motion into account. 
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1. In troduct ion  

A Local motion planning is one of the key 

issues of mobile robot control. Especially, an 

issue of practical importance is the local obstacle 

avoidance method which guides a robot through 

a collision-free space to a given goal heading, 

or to a goal location, in unknown or partially 

known environment. For fast and smooth robot 

movement, the method should be efficient for 

real-time implementation, and take the dynamics 

and physical limitations of the robot into ac- 

count. 
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There have been two major approaches for 

the local obstacle avoidance: directional appro- 

aches and velocity space approaches. Though 

many of them efficiently yield commands guiding 

the robot through a collision-free path, they often 

do not address the dynamics of the robot, and 

result in slow or jerky movement. This is the case 

for many of the directional approaches. As for the 

velocity space approaches, they often fail to guide 

a robot through collision-free space which is 

obviously easy to find. 

The directional approaches compute the direc- 

tion for a robot to head in, in Cartesian space 

or configuration space. The V-graph search me- 

thod (Kant and Zucker, 1986), artificial poten- 

tial field methods (Khatib, 1986; Hwang and 

Ahuja, 1992), and Vector Field Histogram (VFH) 

method (Borenstein and Koren, 1991) belong in 

this category. Though the potential field based 

approach is simple and easily extensible, they 
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have some drawbacks : problem of local minima, 

difficulty in doorway passage, oscillatory move- 

ment in a narrow corridor. Also, they are not 

adequate for taking the robot dynamics into ac- 

count. One of the improved potential field ap- 

proach, VFH method (Borenstein and Koren, 

1991) achieved smoother navigation and more 

successful traveling through narrow openings 

(Kortenkamp et al., 1998). And then, there have 

been many efforts to improve these drawbacks 

of the potential field approach (Cho et al., 2001 ; 

Louste and Liegeois, 2002) until these days. And 

yet, since the approach pays major attention to 

collision-free direction, it is still not adequate to 

deal with vehicle dynamics, which can cause pro- 

blems in cluttered environments. 

Velocity space approaches, on the other hand, 

choose rotational velocity along with translation- 

al velocity driving the robot through collision- 

free space, and can incorporate vehicle dynamics 

(Simmons, 1996 ; Buhmann et al., 1995 ; Feiten et 

al, 1994 ; Fox et al., 1995 ; Kelly, 1995) into ac- 

count. They typically presume that the robot tra- 

vels along a trajectory of arc segments (Simmons, 

1996) or parabolas (Ihn, 1996; Kwon, 1997). 

Sometimes nonholonomic property of wheeled 

mobile robots is taken into account by construc- 

ting the robot path with straight line segments 

connected by circular arcs (Esquivel and Chiang, 

2002). 

The Curvature-Velocity Method (CVM) ch- 

ooses a point in translational-rotational velocity 

space which satisfies some constraint and maxi- 

mizes an objective function (Simmons, 1996). 

The constraint represents both the presence of 

obstacles and physical limitations on robot's ve- 

locity and acceleration. CVM is used in the robot 

Xavier (Simmons et al., 1997) as a local collision 

avoidance method at CMU. Though it produces 

reliable, smooth, and speedy navigation in office 

environments, it has some shortcomings. Often, at 

an intersection of corridors, it fails to guide the 

robot into a narrow open corridor toward the 

goal direction. It also passes by some entrances 

toward the paths which are at right angles to 

the current robot orientation. Also, it sometimes 

lets a robot head towards an obstacle until the 

robot gets near the obstacle, even if there is a clear 

space around the obstacle. These problems all 

stem from the fact that CVM chooses commands 

based on the collision-free length of the arcs 

assumed to be robot's trajectories. It does not 

consider that the robot may be on that arc for just 

a short distance, and will soon be turning again. 

In short, CVM pays less attention to collision- 

free directions than do the directional approaches. 

In this respect, we devised the method LCM and 

implemented it on Xavier. 

The Lane-Curvature Method (LCM), des- 

cribed in this paper, improves the velocity space 

approach by considering collision-free direction 

as well as the collision-free arc length. It is a 

two-step approach to navigation. First, given a 

desired goal heading, a directional approach, call- 

ed the Lane Method, chooses a "lane" for the 

robot to be in, taking obstacle avoidance, motion 

efficiency, and goal directedness into considera- 

tion. Then, the Lane Method calculates a local 

heading that will guide the robot either into, or 

along, the selected lane. Since the Lane Method 

alone cannot account for the physical constraint 

of the robot motion, the local heading is supplied 

to CVM as a heading command. Based on this 

local heading, CVM produces translational and 

rotational velocity commands, taking the physical 

constraint of the robot into consideration. 

As the first step of LCM, the Lane Method 

concerns primarily about obstacle avoidance. The 

CVM step works to produce commands taking 

account of the physical limitations of the robot 

motion, as well as obstacle avoidance. Though 

obstacle avoidance is considered in both steps, 

they consider obstacle avoidance in different as- 

pects. While the CVM counts on collision-free 

arc length for obstacle avoidance, Lane Method 

uses collision-free straight-line distance and col- 

lision-free lane width. Combining these two 

steps, LCM considers more aspects for obstacle 

avoidance than does either CVM-only or Lane 

Method. 
Since the LCM uses CVM to yield final com- 

mands, it maintains the advantages of CVM over 

potential field approaches (Khatib, 1986) and 

Vector Field Histogram method (Borenstein and 
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Koren, 1991). Potential field approaches use vec- 

tor sum of repulsive and attractive features to 

compute a local heading. Speed control is some- 

times handled by choosing velocity proportional 

to the magnitude of the potential vector, or pro- 

portional to the distance to obstacles ahead. So, 

the potential field method yields less smooth 

path than the CVM, as shown in the reference 

(Simmons, 1996). Though there are some other 

methods studied in the context of off-line path 

planning, taking vehicle dynamics and non-ho-  

lonomic constraints into account (Jacobs and 

Canny, 1989; Latombe, 1991), they generally 

require more computations than the LCM. 

The Lane Method chooses the direction to a 

wide collision-free opening since it decides a 

local heading based on the collision-free distance 

and width of lanes. On the other hand, the direc- 

tional method chooses a direction to an opening 

with wide collision-free angular range rather than 

an opening with wide width. So, it may force a 

robot into a narrow opening near the robot be- 

cause even a narrow opening can offer wide colli- 

sion-free angular range to a robot if the opening 

is close to the robot. In this respect, the Lane 

Method can provide safer heading commands to 

CVM than the directional method. 

The rest of the paper is organized as follows. 

Section II describes the LCM which consists of 

the Lane Method and CVM. It explains how the 

work area is divided into lanes, how to select the 

best lane to follow, and the method determining 

the local heading direction to get into the lane. 

Finally it briefly reviews CVM which calculates 

translational and rotational velocity with refer- 

ence to the local heading direction. In Section III, 

experimental results and discussions of imple- 

menting the LCM are shown. Also, the results are 

compared with those of experiments using the 

CVM, to present the improvements in collision 

avoidance motion. Then in Section IV, we draw 
some concluding remarks. 

2. The Lane-Curvature Method 
(LCM) 

The proposed method consists of two steps. 

First, the Lane Method calculates local heading 

direction for obstacle avoidance taking the goal 

direction and mobility of the robot into account. 

And then the CVM finds the translational and 

rotational velocity. The robot cannot change its 

heading direction instantaneously. So we cannot 

command the robot to follow the local heading 

direction immediately. Instead, the local heading 

direction obtained from the Lane Method is fed to 

the CVM. CVM calculates translational velocity 

and rotational velocity based on the local heading 

direction and considering the physical limitations 

of robot motion and collision avoidance. 

Our approach takes care of collision avoidance 

twice, once in Lane Method and once in CVM. 

While the Lane Method considers collision avoi- 

dance assuming that the robot trajectory consists 

of straight line segments, CVM considers collision 

avoidance on the assumption that the trajectory 

consists of arcs. Therefore, the LCM, combining 

these two methods, results in much safer motion 

than the CVM only. Figure 1 depicts the outline 

of the LCM. 

To find a safe local heading direction for colli- 

sion-free movement, the Lane Method divides the 

environment into lanes oriented in the direction 

of the desired goal heading. Then it selects the 

best lane for collision-free and efficient motion. 

Finally, it calculates a local heading to enter, or 

continue along, the selected lane. CVM uses the 

local heading to find translational and rotational 

Desired goal heading 

Lane Method ] 
1. Lane division [~ ....................... 
2. Lane selection I i 
3. Locaiheading ] 

Local heading d i r e e t i o n ~  

Translational and rotational velocity 

Fig. I Outline of the LCM 
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velocity. 

2.1 Lane division 

The lanes are constructed by determining the 

maximum collision-free distance to obstacles 

along the desired goal heading. Adjacent lanes 

with similar collision-free distances are merged. 

To facilitate the lane determination, and to match 

the implementation of CVM, the obstacles are 

approximated as circles, represented by their loca- 

tions and radii. The radii of the obstacles are 

increased by the radius of the robot to convert 

Cartesian space obstacles into configuration space 

obstacles, since our robot is also circular. 

The parameters describing the k-th lane are 

lane width w(k),  collision-free distance d ( k ) ,  

and view angle va(k), which is the angle at 

which a line from the robot to the lane passes 

through only collision-free areas. These para- 

meters are depicted graphically in Figure 2. 

In Figure 2, the number of lanes NL is six. The 

working area is divided into lanes within the 

range of the maximum obstacle sensing distance 

(set to 4 meters in our experiments). In deter- 

mining lanes, we ignore the obstacles that are 

"behind" the robot. Since the robot is continually 

moving forward, we actually determine what ob- 

stacles are "behind" the robot as those whose 

angular distance from the desired goal heading is 

beyond some predefined angle limit. The angular 

limits for the clockwise and counter clockwise 

gd 

lane0 tane I 

i , 

/ 
sta~ng line ] 

va(O) 

Fig. 2 

lane 4 lane 5 

ba 

sonar detecting range 

Lanes and their describing parameters 

direction are determined individually. In our im- 

plementation, the blocking angle limit, ba for 

each direction is set to : 

I bal 
_190 °, if there is no obstacle on the starting line (1) 

- t  55 °, if there are some obstacles on the starting line 

The collision-flee distance of the k- th  lane, 

d(k) is defined as the distance the robot can go 

through the k- th lane before hitting obstacles, 

from the starting line. 

The view angle for the k- th  lane, va(k) is the 

minimum angle from the desired goal heading 

gd to the collision-free direction to the k- th  

lane. In determining va(k), it is assumed that 

the i- th lane ( i=0.1 ,  .--, NL-- 1) is blocked at the 

distance d(i) from the starting line. 

A lane with very narrow lane width is merged 

to a neighboring lane by the following rule: If 

w(h) <Wm~n and d(h) >Min{ d ( h - l ) ,  d(h+ 
1)} for some I~h<NL-2 ,  then merge the h-th 

lane into the neighboring lane with the shorter 

collision-free distance. In the experiment, Wmln is 

set to be 2.0 cm. Also, two lanes with similar 

collision-free distances are merged together using 

the following rule : If l d(h) - d ( h +  1 ) I < A d ~ n ,  

O<-h~NL-2, then merge the lane with longer 

collision-free distance into the other lane. We set 

/xdmtn:2.5 cm in the experiment. 

2.2 Lane selection 

Once lanes are constructed, the Lane Method 

chooses the best lane to be in for efficient and 

collision-free movement. For safe, collision-free 

movement, it is desired to go through a lane 

with longer collision-free distance and wider lane 

width. For efficient steering, smaller change of 

heading command is desired. Also, abrupt change 

of heading command due to noisy sonar reading 

can be prevented by keeping the change of head- 

ing command as small as possible. For fast and 

efficient robot motion, heading command closer 

to the current robot orientation Or is preferred. 

To address the above discussions, we choose the 

following linear function fs(k) as a lane selection 

function. 
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f,(k) =13,. J(k) +132. ~(k) (2) 
--133" adva,c(k) -134" ad~a,o (k) 

d(k) =Min{ d(k),  D,~at }/D,~it (3) 

ff~(k) =Min{ w(k) ,  Wz~it }/W~it (4) 

adoa,c(k) =Min{ I va(k) -cp I, Cu~t }/ Cl~t (5) 

a~,o(k)  =Min{I va(k) -Or I, O,~n } / 0 , ~  (6) 

cp " heading command of the previous sampling 

time 

Or " current oriention of the robot 

Finding k maximizing the fs(k) selects a wide, 

collision-free, and motion-efficient lane. Since 

the view angle va(k) is the minimum collision- 

free angular deviation from the goal heading gd 
to the k- th  lane, we use it as a guiding direction 

to the k- th  lane in the selection function (2). 

Here, each term in fs(k) is limited and nor- 

malized by the corresponding maximum values, 

Dt~it, Wt~it, Ct~it, and Olffait. The distance to an 

obstacle in a lane d(k) is limited by the limit 

distance D,~na. If d (k) is beyond Oumit, the lane 

is regarded as collision-free and the longer colli- 

sion-free distance doesn't guarantee safer motion. 

Likewise, if the width of the lane is wider than 

the limit width Wren, then the lane is wide 

enough to collision-free motion, and also, the 

wider lane width doesn't guarantee safer motion. 

In equation (5), the angular difference from the 

view angle to previous heading command is lim- 

ited to Ct~t. If the angular difference is beyond 

the limit, it is considered to have the same value 

Ct~it. In equation (6), the angular difference 

from the view angle to the current robot orienta- 

tion is limited to Ot~n~t. If the angular difference 

is beyond the limit, it is considered to have the 

same value Ot~.  
In equation (2) the terms adva.c(k) and 

adw,o(k) plays the role of both reducing the 

effect of noisy sonar reading of obstacle location 

and smoothing robot motion. Ultra sonic sensors 

used in our work are liable to yield wrong dis- 

tance information due to noise, multiple reflec- 

tion, and so on (Kang and Lira, 1999). Non-  

structural sonar noise is often random and dis- 

appears soon. So, even if there is no obstacle, 

sonar may detect false obstacles temporarily. In 

this case, sonar misreading may result in abrupt 

change of steering direction both before and after 

the misreading. The term adva,c (k) indicates pre- 

ference for smaller change of heading command. 

Similarly, the term adva,o(k) indicates prefer- 

ence for heading command closer to the current 

robot orientation. Due to these two terms, the 

robot prefers to cbange its direction as small as 

possible from current orientation and current 

steering command. So, they can reduce the in- 

fluence of false detection of obstacles due to sonar 

misreading. 

The 13 values are the weights to be given to each 

term of the selection function and they are all 

positive. In our experiment, they are set to be 

131 : 132 : 133 : 134=6 : 1 : 6 : 1. 131 and 132 are the 
weights for collision-free distance and lane width 

respectively. 133 and 134 are the weights for angular 

deviation of robot steering direction from previ- 

ous heading command and from robot orientation 

respectively. If 131 and/~z are set to high, the robot 

selects a lane with wider width and longer dis- 

tance to obstacles. If 13a and 134 are set to high, the 

trajectory becomes smoother. However, too high 

13a and 134 doesn't allow the robot to change its 

course fast enough even if obstacles are detected 

in front of the robot motion. If they are two low, 

robot responds too sensitive to sonar detection of 

obstacles, and thus results in oscillatory robot 

trajectory. Besides, it may result in unnecessary 

avoidance motion in response to false detection of 

obstacles due to sonar misreading. 

2.3 Local heading 
If the robot is already in the best lane, the 

original desired goal heading is sent to CVM, 

and the CVM uses the goal heading to calculate 

translational and rotational velocity command. 

Otherwise, a local heading is calculated that 

causes CVM to transfer lanes to the best lane. 

Assume the ns-th lane is selected as the best. 

Since the view angle va(ns) is the minimum 

collision-free angle to the ns-th lane, the local 

heading hc should be I va(ns)I<t hc I. Also, we 

confine the local heading to be within the bloc- 

king angle ba, that is ] hc I<1 ba 1. So, the local 
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gd 

starting fine lane n r 

Fig. 3 Determination of local heading 

heading hc becomes : 

gd, if nr=ns (7) 
hC=l  va(ns) +8" (ba -va (ns )  ), if nr4=n, 

where, nr is the number of the lane where the 

robot is in, and 0 .0<8<1 .0 .  

The value 8 determines how far the local 

heading is from the view angle of the selected 

lane. If 8=0 ,  then the local heading is just the 

view angle, and there is no clearance for safe 

motion. If 8 =1.0, local heading always directs 

to the extreme left hand side or right hand side. 

In our experiments, ~ is set to 0.5. The relation- 

ship between the local heading hc, view angle 

va(n,) ,  and blocking angle ba is shown in the 

Figure 3. 

Since the robot is not able to change its heading 

direction abruptly, local heading direction can 

not be used as a command directly to the robot. 

To command the robot to steer toward the local 

heading continuously, we use the curvature based 

method CVM which yields translational and rota- 

tional velocity command. In addition, the CVM 

considers collision avoidance again assuming that 

the robot trajectory consists of arcs. 

2.4 Translational and rotational velocity-  
CVM 

To produce optimal translational velocity and 

rotational velocity, the CVM (Simmons, 1996) 

requires heading command as an input. The local 

heading obtained by the lane method is fed to the 

CVM as an input of heading command. 

The CVM formulates local obstacle avoidance 

problem as one of constrained optimization in the 

velocity space of the robot. It determines trans- 

lational velocity tv and rotational velocity rv, 
maximizing the objective function f (to, rv): 

f (tv, r v )=a l .d i s t ( t v ,  rv) +a2,head(rv)  (8) 
+ a3" speed (tv) 

dist( tv,  r v ) = d ( t v ,  rv, O B S ) / L  (9) 

head(rv)  = 1 - 1  Oc-rv" Tc I/x (10) 

speed (tv) = tv / tvm~ (11) 

d (tv, rv, OBS) is the arc distance that the robot 

can go with the curvature c = r v / t v  before hit- 

ting a set of obstacles OBS. The arc distance 

d(tv ,  rv, OBS) is normalized to dist( tv,  rv) 
by some limiting distance L (three meters, in our 

implementation). The head(rv)  is the norma- 

lized error in goal heading. It is defined to be the 

normalized difference between the heading com- 

mand Oc (in the robot's local reference frame) 

and the heading the robot will achieve if it turns 

at the rotational velocity rv for some time con- 

stant Tc (Tc is the command issuing period). In 

other words, the objective function tries to have 

the robot achieve fast movement close to the 

heading command, while traveling longer before 

hitting the obstacles. 

In the equation (8), the al is the weight for 

long collision-free arc length, a2 is the weight for 

steering close toward the heading command, as 

is the weight for fast motion of the robot. If al 

becomes higher, the robot gives more attention to 

collision avoidance while it moves slowly and 

deviates more from heading command. If a~ be- 

comes higher, the robot steers more close to 

heading command while it moves slowly and the 

possibility of collision becomes higher. If as be- 

comes higher, the robot moves faster at the ex- 

pense of higher possibility of collision and larger 

deviation from the heading command, a values of 

the CVM were determined through a number of 

empirical trials as the values resulting in best safe, 
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smooth, and efficient robot movement. 

The constraints maintaining the robot motion 

within its physical limitations are the followings : 

0 < tv ~ tVmax, - rVmx ~ rv ~ rVmax 

rv > rVcur-- ( ram=" Ta,ca) 

rv < rVcur + ( ramax" Ta,~,,) 12) 

tv > t v ~ r -  ( tamax" Ta,~) 
tv ~ tV~r +(tam=" T~,,~) 

These constraints limit the robot's translational 

velocity, rotational velocity, translational acce- 

leration, and rotational acceleration within the 

maximum values tVmax, rVmax, tamx, and ramax, 

respectively. The constraint O<tv prohibits the 

robot from moving backward. Here, Taccet is the 

time interval with which commands are issued, 

and is set to be the same as the Tc of (10). 

As a whole, CVM finds a point in transla- 

t ional-rotational velocity space satisfying the 

constraints (12), and maximizing the objective 

function (8). This produces rotational and trans- 

lational commands that move the robot through 

a safe and goal directed path as fast as possi- 

ble, within the robot's physical driving ability. 

Though it doesn't completely consider dynamics 

of robot motion, it prevents abrupt change of 

robot motion and yields smoother and faster mo- 

tion than the directional approaches. 

different size form an obstacle. The radius of a 

circular obstacle is determined using the distance 

data fed from the sonars or laser range sensor. If 

a sonar detects an obstacle, it is assumed that a 

circular obstacle occupies 15 degrees of space. So, 

as the distance to the obstacle is large, the radius 

of the obstacle becomes large. The Figure 5 ex- 

plains how the radius is calculated. 

In the Figure 5, an obstacle is detected at the 

distance l from the center of the sonar array ring. 

zJ0 is the angular space between the directions 

of sonar r a d i a t i o n - - i n  the experiments, 15 de- 

grees. Since ( l + r ) s i n ( z l O / 2 ) = r ,  we get the 

radius r of the obstacle as the following. 

3. Experiments and Results 

The LCM algorithm has been implemented 

and extensively tested on the Xavier mobile robot 

(Figure 4) (Simmon et al., 1997). Xavier is built 

on a four-wheel synchro-drive base, produced 

by RWl, and has independent control over trans- 

lational and rotational velocities. For obstacle 

detection, it uses a ring of 24 sonars (data rate 2 

Hz) and a 30 degree field of view front-pointing 

Nomadics laser range sensor. The base provides 

Xavier with dead-reckoning information at 8 Hz, 

which is the rate at which the LCM algorithm 

runs ( Tc= Tac~,= 1/8 sec= 125 msec). The LCM 

algorithm runs on an on-board 200MHz Pen- 

t ium-Pro computer. 

In the experiment, obstacles are modeled as 

circles. Sometimes, multiple circular obstacles of 

Fig. 4 The Xavier mobile robot 

Jl 

V Center of sonar array ring 

Fig. 5 The method calculating the radius of an ob- 
stacle 
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sin( ,d0/2)  
r = l  

1 - - s in  (`d0/2) 

As in the experiment, if ,dO = 15" for the sonar 

array, the equation becomes r=0 .501 ,  l. 

If the obstacle is within the angular range of 

Nomadics laser range sensor (30 ° in the paper), 

we can detect the configuration of the environ- 

ment more precisely, since the laser range sensor 

scans the range data much more closely than the 

sonar array. Typically the angular space ,dO for 

the case of laser range sensors is ,d0=0.5 °. The 

method of calculating the radius of the obstacles 

is the same as for the case of sonar, as described 

in the equation above. 

The a values of the CVM objective function 

(8) were determined through a number of em- 

pirical trials as the values resulting in best safe, 

smooth, and efficient robot movement. The values 

used in the combined LCM approach differ from 

those used when CVM is the only obstacle av- 

oidance mechanism. In LCM, they are set to be 

ax=0.1, az=0.6, aa=0.3, while they are set to be 

a1=0.6, a2=0.1, a3=0.3, if CVM alone is used 

for obstacle avoidance (Simmons, 1996). While 

a~, which dictates the importance of long, colli- 

sion-free arcs, is set high for obstacle avoidance 

in the CVM-only case, it is lowered in LCM 

because obstacle avoidance is fully addressed by 

the Lane Method. On the other hand, the a2, 

which dictates the importance of steering close 

toward the heading command, is set higher in 

LCM, to force the robot to adhere more closely to 

the local heading (or heading command) that is 

issued by the Lane Method. 

To show the improvement of obstacle avoid- 

ance performance, the results of the LCM and 

CVM only are compared for the four environ- 

ments: (1) turning at a corner with three ob- 

stacles, (2) going through a corridor with an 

obstacle, (3) entering to a narrower corridor, and 

(4) turning right into a narrow entrance. The 

maximum translational and rotational velocities 

are set to be tVmax----5Ocm/sec, rvmax=60°/sec. 
Note that in all the environments, the robot has 

no prior knowledge of the environments and it is 

just provided with the desired goal heading gd. 

The information on environments is given during 

robot motion from the sonars. 

The results for the first environment are shown 

in the Figure 6. In this experiment, the robot 

starts to move downward from the top, and goal 

heading gd is - 9 0  °. That is, the robot is com- 

manded to find and go through a collision-free 

path in the direction --90 ° from its initial orien- 

tation (that is, from the top to the lower right in 

the figure). There are two possible collision-free 

paths: One is over the second obstacle, and the 

other is below the second obstacle which is nar- 

rower than the other. While LCM finds the wider 

collision-free path successfully, the CVM first 

tries to find a collision-free path below the sec- 

ond obstacle. As the robot gets closer, it discovers 

that the collision-free path below the second ob- 

stacle is too narrow, and so CVM directs it back, 

and eventually finds the collision-free space. In 

this case, at first the CVM misses the wider colli- 

sion-free path. 

Figure 7 shows the results for the second en- 

vironment. The robot starts from left to right, and 

goal heading is g d = 0  ° (that is, to the right in the 

(a) LCM (b) CVM 

Fig. 6 Turning at a corner avoiding obstacles 

(a) LCM (b) CVM 

Fig. 7 Avoiding an obstacle in a corridor 
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figure). The LCM forces the robot to steer away 

from the obstacle earlier than does CVM. CVM 

lets the robot head towards the obstacle until the 

robot gets too close to turn smoothly. This is 

because the CVM prefers longer collision-free 

distance of arc, rather than collision-free space 

itself. On the other hand, LCM can detect wide 

collision-free lane from earlier stage, and the 

avoidance motion begins earlier. 

Figure 8 shows results for the third environ- 

ment. The robot starts to move upward from 

the bottom, and goal heading is g d = 0  ° (that is, 

heading up in the figure). Though there is a nar- 

row open corridor in the direction of  gd,  CVM 

guides the robot straight towards the wall, turning 

late to avoid it. With LCM, the robot notices the 

long open corridor, and steers toward the corri- 

dor fairly early. 

In Figure 9, results for the fourth environment 

are shown. The robot starts from the left to right, 

and goal heading here is g d = 9 0  ° (that is, turning 

downward in the figure). LCM smoothly guides 

the robot through the entrance into the correct 

corridor, while CVM fails to find the perpen- 

dicular entrance to the corridor 90 ° apart from its 

way, and continues straight (later turning down 

the next corridor). This result is similar to the 

result for the first environment, where the CVM 

passes over a wide opening and fails to find 

collision-free path. In this environment, the width 

of the entrance to the perpendicular corridor is 

120 cm. If the width of the entrance increases by 

20 cm, CVM can also find the perpendicular cor- 

ridor. 

| m i!i 
(a) LCM (b) CVM 

Fig. 8 Entering into a narrower corridor 

Through experiments, we found that proper 

selection of a values is critical to have the LCM 

to overcome the shortcomings of CVM. As the or2 

decreases below 0.6 and al increases above 0.1, 

the LCM produces similar paths as the CVM- 

only does. Also, it is noticeable that since the a 

values in LCM differ from those for CVM-only  

case, the CVM stage in LCM pays less attention 

to obstacle avoidance than does in CVM-only  

case. 

Though the arrangements of the work area 

shown above are of  extreme cases, they show 

typical circumstances where CVM fails. The fail- 

ure of CVM for these experiments can be ex- 

plained using Figure 10. Since the CVM prefers 

longer collision-free arc length, and a, is much 

(a) LCM (b) CVM 

Fig. 9 Turning right through a narrow entrance 

Fig. 10 Problems of CVM 
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greater than tr2, it prefers the path through the 

arc oc rather than the path through the arc oa 

or oh. However, the path through oc is not better 

than the other paths, regarding the obstacle av- 

oidance and motion efficiency. In the CVM-only  

case, it does not help to make al less than a% 

however, since then CVM will be reluctant to turn 

the robot to avoid obstacles, preferring to keep 

heading in the goal direction. This is not a prob- 

lem in the combined LCM approach, because the 

Lane Method supplies CVM with a local heading 

(heading command) that will avoid obstacles un- 

der the assumption of  straight-l ine motion. 

As shown in these results, LCM overcomes 

some of the CVM's shortcomings by incorpora- 

ting the Lane Method, while maintaining advan- 

tages of CVM. The disadvantage of  the proposed 

method is that it requires more computations than 

the CVM. As it may, it is not so critical because 

the computation time doesn't exceed the period 

of obstacle detection. At least, the method issues 

translational and rotational velocity command 

before the robot updates sensor information on 

obstacles. 

which CVM misses. 

This work shows that by combining the direc- 

tional method and curvature-based velocity-space 

method, we can obtain an efficient and reactive 

local navigation algorithm which produces smoo- 

th and speedy, as well as safe, coll ision-free move- 

ment. 

In our implementation, a ring of  24 sonars 

is used for obstacle detection. As well known, 

sonars are subject to noise and sporadic false 

readings. The inaccurate range data deteriorates 

reliable and fast robot motion even though the 

obstacle avoidance algorithm is good enough. To 

make an obstacle avoidance algorithm work well, 

a method to obtain reliable, fast, and accurate 

information on obstacles should be employed for 

safe and efficient navigation. 
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